Non-negative Sparse Modeling of Textures
نویسنده
چکیده
This paper presents a statistical model for textures that uses a non-negative decomposition on a set of local atoms learned from an exemplar. This model is described by the variances and kurtosis of the marginals of the decomposition of patches in the learned dictionary. A fast sampling algorithm allows to draw a typical image from this model. The resulting texture synthesis captures the geometric features of the original exemplar. To speed up synthesis and generate structures of various sizes, a multi-scale process is used. Applications to texture synthesis, image inpainting and texture segmentation are presented. 1 Statistical Models for Texture Synthesis The characterization of textures is a central topic in computer vision and graphics, mainly approached from a probabilistic point of view. Spatial domain modeling. The works of both Efros and Leung [1] and Wei and Levoy [2] pioneered a whole area of greedy approaches to texture synthesis. These methods copy pixels one by one, enforcing locally the consistence of the synthesized image with the exemplar. Recent approaches such as the method of Lefebvre and Hoppe [3] are fast, multiscale and give impressive results. Transformed domain modeling. Julesz [4] stated simple axioms about the probabilistic characterization of textures. A texture is described as a realization of a random process characterized by the marginals of responses to a set of linear filters. Zhu, Wu and Mumford [5] setup a Gibbs energy to learn both the filters and the marginals. They use a Gibbs sampler to draw textures from this model. A fast synthesis can be obtained by fixing the analyzing filters to be steerable wavelets as done by Heeger and Bergen [6]. The resulting textures are similar to those obtained by Perlin [7]. They exhibit isotropic cloud-like structures and fail to reproduce long range anisotropic features. This is because wavelets decompositions represent sparsely point wise singularities but do not compress enough long edge features. Higher order statistics such as local correlations are used by Portilla and Simoncelli [8] to synthesize high quality textures. Sparse image decompositions. Representing a complex image with few meaningful elements is at the core of the visual processing made by the human cortex. Atteneave [9] and Barlow [10] first stated that efficient high level computations should be performed over a representation of reduced complexity. This biological processing suggests a sparse description of a patches y ∈ R of N pixels extracted from a natural image as
منابع مشابه
Voice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملSpatial Statistics of Textons
Texture classification is one of the most studied and challenging problems in computer vision. A key requirement of successful texture classification algorithms is their ability to quantify the complex nature and diversity of real world textures. Recent developments in automatic texture classification have demonstrated the effectiveness of modeling texture elements as cluster centers of respons...
متن کاملTensor based sparse decomposition of 3D shape for visual detection of mirror symmetry
This study explores an approach for analysing the mirror (reflective) symmetry of 3D shapes with tensor based sparse decomposition. The approach combines non-negative tensor decomposition and directional texture synthesis, with symmetry information about 3D shapes that is represented by 2D textures synthesised from sparse, decomposed images. This technique requires the center of mass of 3D obje...
متن کاملSynthesis of Sound Textures with Tonal Components Using Summary Statistics and All-pole Residual Modeling
The synthesis of sound textures, such as flowing water, crackling fire, an applauding crowd, is impeded by the lack of a quantitative definition. McDermott and Simoncelli proposed a perceptual source-filter model using summary statistics to create compelling synthesis results for non-tonal sound textures. However, the proposed method does not work well with tonal components. Comparing the resid...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007